ArrayComm PROPRIETARY

SECTION 5. SUMMARY AND CONCLUSIONS SDMA-EXP-93-001

SDMA base stations to coexist with other users in the same frequency band, an important
issue in the current PCS proceedings before the FCC where incumbent microwave users are
concerned about interference from PCS operations.

The quantitative results contained herein demonstrate the ability of ArrayComm’s SDMA
technology to substantially improve the quality and capacity of wireless communication
systems in general. In addition, the video tape included with this filing clearly shows the
ability to perform all the necessary signal processing functions in real-time on standard
hardware available today. It is also important to note that while the i ements were
demonstrated using the AMPS analog format and mobile phones, SDM

access) systems.

Future experimentation is expected to include longer
tration studies, along with inclusion of more sophisticated:
software. However, the tests conducted to date demo

denced by the substantial interest expressed by m |
that have been exposed to the technology. The

stions include:
e cellular (analog and digital),
e PCS,

e air-to-ground,
* paging,

wireless access to the

satellite communica

among others. With
domain to increase s
more cost effecti

ingreasing demand for spectrum, SDMA's exploitation of the spatial
¢t8t efficiency provides system designers with new flexibility to design
ess communication systems with new services for the consumer.
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APPENDIX A. SUMMARY OF SDMA VIDEO PRESENTATION SDMA-EXP-93-001

A. Summary of SDMA Video Presentation

A video tape has been prepared (AC-SDMA-001 / 31 July 1993) and submxtted along
with this report. The 30-minute presentation includes:

—

. a description of the experimental apparatus and the experiments to b ':iiiducted,

a demonstration of SDMA processing gain providing increased

a demonstration of SDMA'’s real-time multiple cochannel sxgnal ra.ckmg capability,

Ll

a demonstration of SDMA’s spatial demultiplexing abi
users, .

th multiple cochannel

5. a demonstration of SDMA’s spatial multiplexing
multiple cochannel mobile users, and

fonal transmission abilities to

6. further demonstrations of the directional natiire 68 SDMA’s spatial multiplexer trans-
missions. :

Detailed explanations of each of the exp
the experimental apparatus and procedugé
signal quality and capacity is aurally evic

The experiments conducted by Arr

s-are provided. In addition to visualizing
lved, the ability to substantially increase
in the sound track.

o6titm and documented in the video presentation

the ability to establish bi-directi
be counterintuitive to most, it i
video presentation.

The information cgéita
Comm and may not
Comm, Inc.

the video tape provided herewith is the property of Array-
distributed to anyone without the express writlen consent of Array-
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B. Summary of Initial SDMA Experiments

Initial experimentation involving ArrayComm’s patented and proprietary SDMA tech-
nology has been successfully completed. During the course of these low-power tests, the
ability to provide substantial signal quality and capacity improvement through array signal
processing has been demonstrated.

In the first series of tests, a highly attenuated (20 dB) cellular phone was set to its lowest
power setting (8 dBm) and tuned to 825.24 MHz. An average signal quality improvement
(SDMA processing gain) of slightly more than 9 dB was achieved with the 8-antenna ex-
perimental system, consistent with the minimum theoretical improvement of 9.03 dB. This
quality improvement more than doubled the effective range of the SDMA system over that
of conventional systems in suburban and rural RF environments. In ground level occluded
experiments (where the propagation loss exponent exceeded 8), the range improvement was
correspondingly decreased, however the SDMA processing gain was unchanged.

To demonstrate capacity improvement, three (3) standard cellular phones were all tuned
to the same frequency (825.24 MHz) and set to their lowest power level. The SDMA base
station transponded the necessary SAT tone to keep the phones active. Users were given
phones and were sent in to the active area of the cell. While in motion, they were successfully
tracked in real-time, and three (3) simultaneous conversations were carried out without
crosstalk to three (3) independent users stationed at the base station (no attempt to connect
to the PSTN was made). This clearly demonstrated the ability of the SDMA prototype to
triple the capacity of a single cell.

The ability of SDMA technology to mitigate the PCS coexistence problem with incumbent
microwave users was also demonstrated. Using spatially selective transmission from SDMA'’s
spatial multiplexers, the ability to ensure that current users of the band {e.g., 1.8 GHz) would
not be interfered with by SDMA base station transmissions was demonstrated. Coupled with
SDMA’s directional reception characteristics, handset powers can be substantially lowered,
thus lowering the interference levels to the microwave users from the portable units as well.
Thus, without altering handsets, SDMA technology demonstrably reduces the potential for
interference to incumbent users from both base stations and handsets.

The initial experimentation was performed using ArrayComm’s SDMA-1 prototype
AMPS system. While the improvements were demonstrated using the AMPS analog for-
mat, SDMA does not depend on the particular modulation format. In particular, SDMA
functions equally well with digital transmission systems such as 1S-54, GSM, and 1S-95 and
can significantly enhance the quality and capacity of these systems.

The contents of this appendiz are approved for public release by ArrayComm, Inc.
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APPENDIX C. DISTRIBUTION LIST

C. Distribution List

SDMA-EXP-93-001

I, Dr. Richard Roy, hereby certify that a copy of this report and video tape AC-SDMA-
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The Honorable Andrew Barrett

Commissioner, Federal Communications Commission

1919 M Street NW, Room 844
Washington, DC 20554

The Honorable Ervin S. Duggan
Commissioner, Federal Communications Comimis
1919 M Street NW, Room 832
Washington, DC 20554
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Chairman, Federal Commumca.tlo mission
1919 M Street NW '
Washington, DC 20554

Dr. Robert M. Pepper
Office of Plans and Po i

1919 M Street NW
Washington, DE*20¢

The Hono ames H. Quello
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Dr. Thomas P. Stanley
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Washington, DC 20554
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[57] ABSTRACT

The invention described herein relates generally to the
field of signal processing for signal reception and pa-
rameter estimation. The invention has many applica-
tions such as frequency estimation and filtening, and
array data processing, etc. For convenience, only appli-
cations of this invention to sensor array processing are
described herein. The array processing problem ad-
dressed is that of signal parameter and waveform esu-
mation utilizing data collected by an array of sensors.
Unique to this invention is that the sensor array geome-
try and individual sensor charactenstics need not be
known. Also. the invention provides substantal advan-
tages in computations and storage over pnior methods.
However, the sensors must occur in pairs such that the
paired elements are identical except for a displacement
which is the same for all pairs. These element pairs
define two subarrays which are identical except for a
fixed known displacement. The signals must also have a
particular structure which in direction-of-arnval esti-
mauon applications manifests itself in the requirement
that the wavefronts impinging on the sensor array be
planar. Once the number of signals and their parameters
are estimated, the array configurations can be deter-
mined and the signals individually extracted. The tnven-
tion is applicable in the context of array darta processing
to a number of areas including cellular mobile commu-
nications, space antennas, sonobuoys. towed arravs of
acoustic sensors, and structural analysis.

7 Claims. 3 Drawing Sheets
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METHODS AND ARRANGEMENTS FOR SIGNAL
RECEPTION AND PARAMETER ESTIMATION

The U.S. Government has rights in the invention
disclosed and claimed herein pursuant to Dept. of
Navy Contract NOOO14-85~-K~-0550 and Dept. of Army
Agreement DAAG29-85-K-0048. This application is a
continuation-in-part of application Ser. No. 795,623
filed Nov. 6, 1985, now U.S. Pat. No. 4,750,147.

BACKGROQUND OF THE INVENTION

The invention described in this patent application
relates to the problem of estimation of constant parame-
ters of multiple signals received by an array of sensors in
the presence of additive noise. There are many physical
problems of this type including direction finding (DF)
wherein the signal parameters of interest are the direc-
tions-of-arrival (DOA's) of wavefronts impinging on an
antenna array (cf. FIG. 1), and harmonic analysis in
which the parameters of interest are the temporal fre-
quencies of sinusoids contained in a signal (waveform)
which is known to be composed of a sum of multiple
sinusoids and possibly additive measurement noise. In
most situations, the signals are charactenzed by several

unknown parameters all of which need to be estimated :

simultaneously (e.g., azimuthal angle, elevation angle
and temporal frequency) and this leads to a multidimen-
sional parameter estimation problem.

High resolution parameter estimation is important in
many applications including electromagnetic and
acoustic sensor systems (e.g.. radar, sonar, electronic
surveillance systems, and radio astronomy), vibration
analysis. medical imaging, geophysics. well-logging.
etc. In such applications, accurate estimates of the pa-
rameters of interest are required with a2 minimum of
computation and storage fequirements. The value of
any technique for obtaining parameter estimates 1s
strongly dependent upon the accuracy of the esumates.
The invenuon described herein vields accurate est-
mates while overcoming the practical difficulues en-
countered by present methods such as the need for
detailed a pnion knowledge of the sensor array geome-
try and element charactensucs. The technique aiso
vields a dramatic decrease in the computational and
storage requirements.

The history of estimation of signal parameters can be
traced back at least two centunes to Gaspard Riche.
Baron de Prony, (R. Prony, Essai expenmental et ana-
lytc, etc.L'Ecole Polytechnigue. 1:24-76, 1795) who was
interested in fitting multiple sinusoids (exponenuals) to
data. Interest in the problem increased rapidly aftler
World War II due to its applications 1o the fast emerg-
ing technologies of radar, sonar and seismology. Over
the years, numerous papers and books addressing this

subject have been published. especially in the context of ¢

direction finding in passive sensor arrays.

One of the earliest approaches 1o the problem of
direction finding i1s now commonly refsrred 10 as the
conventional beamforming technique. It uses a type of
matched filtering to generate spectral plots whose peaks
provide the parameter estimates. In the presence of
multiple sources, conventional beamforming can lead to
signal suppression, poor resolution. and biased parame-
ter (DOA) esumates.

The first high resolution method 1o improve upon
conventional beamforming was presented by Burg (J. P.
Burg, Maximum entropy spectral analysis, In Proceed-
ings of the 37th Annual International SEG Meeting, Okla-
homa City, Okla.. 1967). He proposed to extrapolate the

b)
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array covariance function bevond the few measured
lags, selecting that extrapolation for which the entropy
of the signal is maximized. The Burg technique gives
good resolution but suffers from parameter bias and the
phenomenon referred to as line splitting wherein a sin-
gle source manifests itself as a pair of closely spaced
peaks in the spectrum. These probiems are attributable
to the mismodeling inherent in this method.

A different approach aimed at providing increased
parameter resolution was introduced by Capon (J. Ca-
pon, High resolution frequency wave number spectrum
analysis, Proc. IEEE, 57:1408-1418, 1969). His approach
was to find a weight vector for combining the outputs
of all the sensor elements that minimizes output power
for each look direction while maintaining a unit re-
spoase to signals arriving from this direction. Capon'’s
method has difficulty in muitipath environments and
offers only limited improvements in resoiution.

A new genre of methods were introduced by Pisa-
renko (V. F. Pisarenko, The retnieval of harmonics
from a covariance function, Geophys. J. Royal Astronom-
ical Soc.. 33:347-366, 1973) for a somewhat restricted
formulation of the problem. These methods exploit the
eigenstructure of the array covariance matrix. Schmidt
made important generalizations of Pisarenko's ideas to
arbitrary array/wavefront geometries and source corre-
lations in his Ph.D. thesis titled 4 Signal Subspace Ap-
proach to Multiple Emirter Location and Spectral Estima-
rion, Standford University, 1981, Schmidt’'s MUluple
Slgnal Classification (MUSIC) algorithm correctly
modeled the underlying problem and therefore gener-
ated superior estimates. In the ideal situation where
measurement noise is absent (or equivalently when an
infinite amount of measurements are available), MUSIC
yields exact estimates of the parameters and also offers
infinite resolution in that mulupie signals can be re-
solved regardless of the proximity of the signal parame-
ters. In the presence of noise and where only a fintte
number of measurements are available. MUSIC esu-
mates are very nearly unbiased and efficient. and can
resolve closely spaced signal parameters.

The MUSIC algonthm, often referred to as the eigen-
structure approach. is currently the most promising
high resolution parameter estimation method. How-
ever, MUSIC and the earlier methods of Burg and
Capon which are applicable to arbitrary sensor array
configurations suffer from certain shortcomings that
have restricted their applicability in several problems
Some of these are:

Array Geometry and Calibration—A complete char-
actenzauon of the array in terms of the sensor geometry
and element charactenstics is required. In pracuce. for
complex arrays. this characterization s obtained by 2
series of expenments known as array calibrauon o
determine the so called array manifold. The cost of
array cahibration can be quite high and the procedure 1s
sometimes impractical. Also, the associated storage
required for the array manifold 1s 2 mi# words (m 1s the
number of sensors. | is the number of search (gnd)
points in each dimension, and g s the number of dimen-
sions) and can become large even for simple applica-
tions. For example, a sensor array containing 20 ele-
ments, searching over a hemisphere with a | millirad
resolution in azimuth and elevation and using 16 but
words (2 bytes each) requires approximately 100 mega-
bytes of storage' This number increases exponentially as
another search dimension such as temporal frequency s
included. Furthermore, in certain applicauions the array
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geometry may be slowly changing such as in light
weight spaceborne antenna structures, sonobuoy and.
towed arrays used in sonar etc., and a complete charac-

terization of the array is never available.
Computational Load—In the prior methods of Burg,
Capon, Schmidt and others, the main computational
burden lies in generating a spectral plot whose peaks
correspond to the parameter estimates. For example,
the number of operations required in the MUSIC algo-
nthm in order to compute the entire spectrum, is ap-
proximately 4 m2l8. An operation is herein considered
to be a floating point multiplication and an addition. In
the example above, the number of operations needed is
approximately 4 10° which is prohibitive for most
applications. A powerful 10 MIP (10 million floating
point instructions per second) machine requires about 7
minutes to perform these compulsuons! Moreover, the
computation requirement grows exponentially with
dimension of the parameter vector. Augmenting the
dimension of the parameter vector further would make
such problems completely intractable.
The technique described herein is hereafter referred to
as Estimation of Signal Parameters using Rotational
Invariance Techniques (ESPRIT). ESPRIT obviates
the need for array calibration and dramatically reduces
the computational requirements of previous ap-
proaches. Furthermore, since the array manifoid is not
required, the storage requirements are eliminated alto-
gether.

SUMMARY OF THE INVENTION

ESPRIT is an alternative method for signal reception
and source parameter estimation which possesses most
of the desirable features of prior high resolution tech-
niques while realizing substantial reduction in computa-
tion and elimination of storage requirements. The basic
properties of the invention may be summanzed as fol-
fows:

1. ESPRIT details a new method of signal reception
for source parameter estimauon for planar wavefronts.

2. The method yields signal parameter estimates with-
out requiring knowledge of the array geometry and
sensor element charactenstics, thus eliminating the need
for sensor array calibration.

3. ESPRIT provides substantial reduction in compu-
tation and elimination of storage requirements over
pnor techniques. Referring to the previous example.
ESPRIT requires only 4 X 10* computations compared
to 4 x 10° computations required by prior methods, and
reduces the time required from 7 munutes to under 4
milliseconds. Furthermore, the 100 megabytes of stor-
age required is completely eliminated.

4. A feature of the invention is the use of an array of
sensor pairs or doublets (used synonymously herein)
where the sensors in each pair are identical and each
group of pairs has a common displacement vector.

Bnefly, in accordance with the invention, an array of
signal sensor pairs is provided in which groups of sensor
pairs have a uniform relative displacement vector
within each group, but the displacement vector for each
group i1s unique. The sensors in each pair must be
matched, however they can differ from other sensor
pairs. Moreover, the characteristics of each sensor and
the array geometry can be arbitrary and need not be
known. Within each group, the sensor pairs can be
arranged into two subarrays, X and Y, which are identi-
cal except for a fixed displacement (cf. FIG. 2). For
example, in order to simultaneously perform temporal
frequency and spatial angle estimation, one group of
sensor pairs would share a common spatial displace-
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ment vector while the second group would share a

common temporal displacement. In general, for each

additional type of parameter to be estimated, a sensor
group sharing a common displacement is provided.

Furthermore, the number of sensor pairs in each group

must be more than the number of sources whose param-

eters are to be estimated.

Having provided an array of sensors which meets the
specifications outlined above, signals from this array of
sensor pairs are then processed in order to obtain the
parameter estimates of interest. The procedure for ob-
taining the parameter estimates in accordance with one
embodiment employing standard least-squares estima-
tion techniques may be outlined as follows:

1. Using the array measurements from a group of sensor
pairs, determine the auto-covariance matrix Ryx of
the X subarray in the group and the cross<covariance
matrix Ry, between the X and Y subarrays in the
group.

2. Determine the smallest eigenvalue of the covanance
matrix R:y and then subtract it out from each of the
elements on the principal diagonal of Rxx. The results
of the subtraction are referred to hereinafter as Co..

3. Next, the generalized eigenvalues (GE's) y1 of the
matrix pair Cz, Ryy are determined. A number d of
the GE’s will lie on or near the unit circle and the
remaining m-d noise GE's will lie at or near the on-
gin. The number of GE's on or near the unit circle
determine the number of sources, and their angles are
the phase differences sensed by the sensor doublets in
the group for each of the wavefronts impinging on
the array. These phase differences are directly related
to the direcnions of arrival.

4. The procedure is then repeated for each of the
groups, thereby obtaining the estimates for all the
parameters of interest (e.g. azimuth, elevation, tem-
poral frequency).

Thus, the number of sourses and the parameters of
each source are the primary quantities determined.

In another embodiment of the invention, the process-
ing of signal measurements from the two subarrays to
identify the number of sources and estimate parameters
thereof utilizes a total least-squares esumation tech-
nique. The total least-squares algonthm represents an
improvement and simplification of the least squares
algonthm.

ESPIRIT can be further extended to the problem of
determining the array geometry a postenori, i.e., obtain-
ing estimates of the sensor locations given the measure-
ments. Source powers and optimum weight vectors for
solving the signal copy problem. a problem involving
estimation of the signals received from the sources one
at a time eliminating all others, can also be esumated in
a straightforward manner as follows:

1. The optimum weight vector for signal copy for the
1”# signal is the generalized eigenvector (GV) e, corre-
sponding to the i" GE ¥i.

2. For the case when the sources are uncorrelated, the
direction vector a, for the i*" wavefront is given by
Rxyei. With these direction vectors in hand, the array
geometry can be estimated by solving a set of linear
equations.

3. Using the direction vectors a,, the signal powers can
also be estimated by soiving a set of linear equations
The invention and objects and features thereof will be

more readily apparent from the following example and

appended claims.
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BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a graphic representation of a problem of
direction-of-arrival estimation in which two sources are
present and being monitored by a three-element array of
sensors.

FIG. 2 is a graphic representation of & similar prob-
lem in which the two signals are now impinging on an
array of sensors pairs in accordance with the invention.

FIG. 3 is a graphic illustration of the parameter esti-
mates from a simulation performed in accordance with
the invention in which three signals were impinging on
an array of eight sensor doublets and directions-of-
arrival were being estimated.

DETAILED DESCRIPTION OF THE
DRAWINGS

As indicated above, the invention is directed at the
estimation of constant parameters of signals received by
an array of sensor pairs in the presence of noise. The
problem can be visualized with reference to FIG. 1 in
which two signals (s} and s3) are impinging on an array
of three sensors (ry, r2, r3). It is assumed in this illus-
trated exampie that the sources and sensors lie in a
plane; thus only two parameters need be identified. the
azimuth angle of the two signals. Heretofore, tech-
niques such as MUSIC have been able to accurately
estimate the DOA's of the two signals; however the
characteristics of each sensor must be known as well as
the overall array geometry. This leads to exceedingly
large storage requirements when the array must be
calibrated, and a correspondingly large computation
time in the execution of the aigorithms.

In accordance with the present invention, array
(manifold) calibration is not required in ESPRIT as
long as the array ts comprised of (groups of) matched
sensor pairs shaning a common displacement vector.
This is iltustrated in FIG. 2 in which the two signals (s}
and s2) are sensed by receiver pairs (r, r'y; rz, r'2; 2nd ra,
r'y). The only requirements of the array are that the
sensors in each pair are offset by the same vector as
indicated, and that the number of sensor pairs exceeds
the number of sources as is the case in this example.

Thus figure illustrates only a single group; the exten-
sion to several groups requires adding sensor pairs with
a displacement vector different from the displacement
vectors of the single group.

The performance of the invention is graphically illus-
trated in FIG. 3 which presents the results of a simula-
tion performed according to the specifications of ES-
PRIT. The simulation consisted of an array with 8 dou-
blets. The elements in each of the doublets were spaced
a quarter of a wavelength apart. The array geometry
was generated by randomly scattering the doubletson a
line 10 wavelengths in length such that the doublet axes
were all parallel to the line. Three planar and weakly
correlated signal wavefronts impinged on the array at
angles 20°, 22°, and 60°, with SNRs of 10, 13 and 16 db
relative to the additive uncorrelated noise present at the
sensors. The covanance estimates were computed from
100 snapshots of data and several simulation runs were
made using independent data sets.

FIG. 3 shows a plot of the GE's obtained from 10
independent trials. The three small circles on the unit
circle indicate the locations of the true parameters and
the pluses are the estimates obtained using ESPRIT.
The GE’s on the unit circle are closely clustered and the
two sources 2° apart are easily resolved.
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As illustrated, accurate estimates of the DOA’s are
obtained. Furthermore, ESPRIT has several additional
features which are enumerated below.

1. ESPRIT appears to be very robust to errors in esti-
mating the minimum eigenvalue of the covarance
Rzz. [t is also robust to the numerical propertes of the
algorithm used to estimate the generalized eigenval-
ues.

2. ESPRIT does not require the estimation of the num-

- ber of sources prior to source parameter estimation as
in the MUSIC algorithm, where an error in the est-
mate of the number of sources can invalidate the
parameter estimates. In accordance with the inven-
tion, ESPRIT simuitaneously estimates the signal
parameters and the number of sources.

APPLICATIONS

There are a number of applications that exploit one or
more of the important features of ESPRIT, i.e., its in-
sensitivity to array geometry, low computational load
and no storage requirements. Some of these are de-
scribed below.

1. Direction-of-Arrival Estimation
(a) Space Antennas—Space structures are necessarily
light weight, very large and therefore fairly flex:-
ble. Small disturbances can cause the structure to
oscillate for long periods of time resulting in a
sensor array geometry which is time-varying. Fur-
thermore, it is nearly impossible to completely
calibrate such an array as the setting up of a suit-
able facility is not practical. On the other hand, the
use of matched pairs of sensor doublets whose
directions are constantly aligned by a low-cost
star-tracking servo results in total insensitivity to
the global geometry of the array. Note that signal
copy can still be performed. a function which 1s
often a main objective of such large spacebome
antenna arrays. [n fact, a connected structure for
the array is not required! Rather, only a collection
of relatively small antenna doublets is needed, each
possessing a star-tracker or earth-based beacon
tracker for alignment. Ease of deployment, mainte-
nance, and repair of such disconnected arrays can
have significant cost and operational benefits (for
example, a defective unit can be merely transported
to a space station or back to the earth for repair).

(b) Sonobuoyvs—Sonobuoys are air-dropped and scat-

ter somewhat randomly on the ocean surface. The
current methods of source locaton require com-
plete knowledge of the three dimensional geometry
of the deployed array. The determination of the
array geometry is both expensive and undesirable
(since it involves active transmission thus alerting
unfriendly elements!). Using ESPRIT, verucal
alignment of doublets can be achieved using grav-
ity as a reference. Honzontal alignment can be
obrained via a small servo and a mimature magnenc
sensor (Or even use an acoustic spectral line radi-
ated from a beacon or the target itself). Within a
few minutes after the sonobuoys are dropped,
alignment can be completed and accurate estimates
of DOA’s become available. As before, signal copy
processing is also feasible. Furthermore, the sono-
buoy array geometry can itself be determined
should this be of interest. :

{c) Towed Arrays—These consist of a set of hydro-

phones placed inside an acoustically transparent
tube that is towed well behind a ship or submanne.
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The common problem with towed arrays is that the
tube often distorts from the assumed straight line
geometry due to ocean and tow-ship induced dis-
turbances. Therefore, prior array calibration be-
comes invalid. In the new approach, any transla-
tional disturbance in the doublets is of no conse-
quence. Therefore by selective use of doublets
(whose orientation can be easily sensed) that are
acceptably co-directional, reliable source DOA
estimates can still be obtained.

(d) Mobile DF and Signal Copy Application-
s—Often, mobile (aircraft, van mounted) direction
finding (DF) systems cannot meet the vast storage
and computational requirements of the prior meth-
ods. ESPRIT can drastically reduce such require-
meants and still provide good performance. This has
particular applicability in the field of cellular mo-
bile communications where the number of simuita-
neous users is limited due to finite bandwidth con-
straints and cross-talk (interchannel interference).
Current techniques for increasing the number of
simultaneous users exploit methods of signal sepa-
ration such as frequency, time and code division
multiplexing apart from the area multiplexing in-
herent to the cellular concept. Using directional
discnmination (angle division multiplexing), the
number of simultaneous users could be increased
significantly. ESPRIT provides a simple and rela-
tively low cost technique for performing the signal
copy operation through angular signal separation.
The estimation (possibly recursively) of the appro-
priate generalized eigenvector is all that is needed
In contrast to substantially more complex proce-
dures required by prior methods.

2. Temporal Frequency Estimation—There are many
applications in radio asironomy, modal identification
of linear systems including structural analysis, geo-
physics sonar, electronic surveillance systems, analyt-
ical chemistry etc., where a composite signal contain-
ing multiple harmonics is present in additive noise.
ESPRIT provides frequency estimates from suitably
sampled time series at a substantially reduced level of
computation over the previous methods.

3. Joint DOA-Frequency Estimation—Applications
such as radio astonomy may require the estimation of
declination and right ascension of radio sources along
with the frequency of the molecular spectral lines
emitted by them. Such problems also arise in passive
sonar and electronic surveilance applications. As
previously noted, ESPRIT has particularly important
advantages in such multi-dimensional estimation
problems.

Having concluded the summary of the invention and

applications, a detailed mathematical description of the

invention is presented.

PROBLEM FORMULATION

The basic problem under consideration is that of
estimation of parameters of finite dimensional signal
processes given measurements from an array of sensors.
This general problem appears in many different fields
including radio astronomy, geophysics, sonar signal
processing, electronic surveillance, structural (vibra-
tion) analysis, temporal frequency esumation, etc. In
order to simplify the description of the basic ideas be-
hind ESPRIT, the ensuing discussion is couched in
terms of the problem of multiple source direction-of-
arrival (DOA) estimation from data collected by an
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array of sensors. Though easily generalized to higher
dimensional parameter spaces, the discussion and results
presented deal only with single dimensional parameter
spaces, i.c., azimuth only direction finding (DF) of far-
field point sources. Furthermore, narrowband signals of
known center frequency will be assumed. A DOA/DF
problem is classified as narrowband if the sensor array
width is small compared to the inverse of the transit
time of a wavefront across the array. The generality of
the fundamental concepts on which ESPRIT is based
makes the extension to signals containing multiple fre-
quencies straightforward as discussed later. Note that
wideband signals can also be handled by decomposing
them into narrowband signal sets using comb filters.

Consider a planar array of arbitrary geometry com-
posed of m matched sensor doublets whose elements are
translationally separated by a known constant displace-
ment vector as shown in FIG. 2. The element character-
istics such as element gain and phase pattern, polanza-
tion sensitivity, etc., may be arbitrary for each doublet
as long as the elements are pairwise identical. Assume
there are d<m narrowband stationary zero-mean
sources centered at frequency wo, and located suffi-
ciently far from the array such that in homogenous
isotropic transmission media, the wavefronts impinging
on the array are planar. Additive noise is present at all
the 2 m sensors and is assumed to be a stationary zero-
mean random process that is uncorrelated from sensor
to sensor.

In order 1o exploit the translational invanance prop-
erty of the sensor array, it is convenient to descnbe the
array as being comprised of two subarrays, X and Y,
identical in every respect although physically displaced
(pot rotated) from each other by a known displacement
vector. The signals received at the i*f doublet can then
be expressed as:

n

d
x{1) = Il Su(NadOr) + nx 1)

k
d
yhy = 1 Sil)oreadsindi/cg (8,) ~ ny(1)

where si(.) is the k** signal (wavefront) as received at
sensor 1 (the reference sensor) of the X subarray, 6 is
the direction of arnival of the k™ source relative to the
direction of the translational displacement vector,
a8x) is the response of the i sensor of either subarray
relative 1o its response at sensor 1 of the same subarray
when a single wavefront impinges at an angle 84, A 15
the magnitude of the displacement vector between the
two arrays, c is the speed of propagation in the transmus-
sion medium, nx(.) and ny(.) are the additive noises at
the elements in the ** doublet for subarrays X and Y
respectively.

Combining the outputs of each of the sensors in the
two subarrays, the received data vectors can be written
as follows:

(1) = A1} + ndn), ()
Ao = APs(1) + ale),
where:
T = (x(0 . xm0)),
n (0 = [ngg(n . Azl
2Ty = o .y,
a,7(1) = [np(0) . aym(0)).

(3
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The vector s(t) is 2 dX 1 vector of impinging signals
(wavefronts) as observed at the reference sensor of
subarray X. The matrix ® is a diagonal d X d matrix of
the phase delays between the doublet sensors for the d
wavefronts, and can be written as:
S04 s “‘/'l- “*
Note that ® is a unitary matrix (operator) that relates
the measurements from subarray X to those from subar-
ray Y. In the complex field, ® is a simple scaling opera-
tor. However, it is isomorphic to the real two-dimen-
sional rotation operator and is herein referred to as a
rotation operator. The m X d matrix A is the direction
matrix whose columns {a(8s), k=1, . . ., d} are the
signal direction vectors for the d wavefronts.

aT=(ai(8u. . . .. am(80)]- (5)-

The autocovariance of the data received by subarray
X is given by:

Rz = Elx(x (D] =ASA* + 2L, ®
where S is the d X d covariance matrix of the signals s(t),
Le.,

S=Eas(r)*}, M
and o2 is the covariance of the additive uncorrelated
white noise that is present at all sensors. Note that (.)* is
used herein to denote the Hermitean conjugate, or com-
plex conjugate transpose operation. Similarly, the cross-
covanance between measurements from subarrays X
and Y is given by:

Rey= Elx(R1)*) = ASD A", (8.
This compietes the definition of the signal and noise
model, and the problem can now be stated as follows:

Given measurements x(t) and y(t), and making no
assumptions about the array geometry. element char-
actenstics, DOA'’s, noise powers, or the signal (wave-
front) correlation, estimate the signal DOA's.

ROTATIONALLY INVARIANT SUBSPACE
APPROACH

The basic idea behind the new technique is to exploit
the rotational invarniance of the underlying signal sub-
spaces induced by the translational invariance of the
sensor array. The following theorem provides the foun-
dauon for the results presented herein.

Theorem: Define T as the generalized eigenvalue
matrix associated with the matrix pencil {(R . —Aminl).
Ry} where Amin is the minimum (repeated) eigenvalue
of Rxx. Then, if S is nonsingular, the matrices $and T
are related by

S

to within 2 permutation of the elements of ®.

Proof: First it is shown that ASA® is rank d and Rx
has a multiplicity (m —d) of eigenvalues all equal to 2.
From linear algebra,

PAASA = min(p(4).p(5) (10)
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where p(.) denotes the rank of the matrix argument.
Assuming that the array geometry is such that there are
no ambiguities (at least over the angular interval where
signals are expected), the columns of the m X d matnx A
are linearly independent and hence p(A)=d. Also, since
S is a d Xd matrix and is nonsingular, p(S)=d. There-
fore, p(ASA®)=d, and consequently ASA* will have
m—d zero eigenvalues. Equivalently ASA® 4 021 will
have m—d minimum eigenvalues all equal to o2 If
{Ai>A:>... >An} are the ordered eigenvalues of R,
then

AM+1= =Am=ol, (an

Hence,
Ryx~Amind =Rz~ o~1=ASA".
Now consider the matrix pencil

Crr~YRiym ASA® ~yASO°A* = ASU—y® A" 13
where Cix =R ~—Amin~*[. By inspection, the column
space of both ASA* and ASP*A* are identical. There-
fore, p(ASA* —yASD*A*) will in general be equal to
d. However, if

v =gl sn Bue (14)

the i’ row of (1 — /@03 511 8/ed) wil] become zero. Thus,

Pl deRs 3N 8 ey g ). (15)
Consequently, the penci (Cxr —¥Rxy) will also decrease
in rank to d—1 whenever y assumes values given by
(14). However, by definition these are exactly the gen-
eralized eigenvalues (GEV's) of the matrix pair
{Cxr.Rxy}. Also, since both matrices in the pair span the
same subspace, the GEV's corresponding to the com-
mon null space of the two matrices will be zero, i.e., d
GEV's lie on the unit circle and are equal to the diago-
nal elements of the rotation matrix &, and the remaining
m~d (equal to the dimension of the common null
space) GEV's are at the ongin. This completes the
proof of the theorem.

Once & is known, the DOA's can be calculated from:

By=arc un {c®rkswonl}. (16)
Due to errors in estimating Ry and Ry from finite data
as well as errors introduced during the subsequent finite
precision computations, the relations in (9) and (11) will
not be exactly satisfied. At this point, a procedure 15
proposed which is not globally optimal, but utilizes
some well established, stepwise-optimal techmiques 1o
deal with such issues.

SUBSPACE ROTATION ALGORITHM (ESPRIT)

The key steps of the algorithm are:

1. Find the auto- and cross-covanance matrix estimates
Ryex and Ry, from the data. N i

. Compute the eigen-decomposition of Rerand Ry and
then estimate the number of sources d and the noise
variance &2 .

3. Compute rank d approximations to ASA®* and
ASD*A* given ol

. The d GEV'’s of the estimates of ASA® and ASD*A"
that lie close to the unit circle determine the subspace
rotation operatar ¢ and hence, the DOA’s.

[
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Details of the algorithm are now discussed.

Covariance Estimation
In order to estimate the required covanances, obser-
vations x(t;) and y(1) at time instants t; are required.
Note that the subarrays must be sampled simulta-
neously. The maximum likelihood estimates (assuming
no underlying data modef) of the auto- and cross-
covariance matrices are then given by

R = an

LY e
Njglx(‘/)x(‘;)

}3 - L g x(epp()e.
TEN o T

The aumber of snapshots, N, oeeded for an adequate
estimate of the covariance matrices depends upon the
signal-to-noise ratio at the array input and the desired
accuracy of the DOA estimates. In the absense of noise,
N>d is required in order to completely span the signal
subspaces. In the presence of noise, it has been shown
that N must be at least m2. Typically, if the SNR is
known, N is chosen such that the Frobenius norm of the
perturbations in R is 30 db below the covariance matrix
norm.

Estimating d and o?

Due 10 errors in Rz, its eigenvalues will be perturbed
from their true values and the true multiplicity of the
minimal eigenvalue may not be evident. A popular
approach for determining the underlying eigenvalue
mulnplicity is an information theoretic method based on
the minimum description length (MDL) criterion. The
estimate of the number of sources d is given by the value
of k for which the following MDL function is mini-
mized:

MDL{k) = (18)
1 (m—~ N
Fcd
- ;
—log| —=£=! + & m — klog N
1 T 1 ]
- I A,
m— K mk+]

where A;are the eigenvalues of Rx,. The MDL criterion
is known to yield asymptotically consistent estimates.
Note that since Rz and Ry both span the same subspace
(of dimension d), a method that efficiently exploits this
underlying model will yield better resuits.

Having obtained an estimate of d, the maximum likeli-
hood estimate of & conditioned on d is given by the
average of the smallest m—d eigenvalues i.e.,

- 19
A 19

-

o~ =

m
3
m-—d =g

ESTIMATING ASA® AND AS®*A®

Using the results from the previous step, and making
no assumptions about the array geometry, the maximum
likelihood estimate C,, of ASA®, conditioned on d and
&2, is the maximum Frobenius norm (F-norm) rank d
approximation of R — &1, e,

20
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s d + .. (20
Ca= 1 G- FheEs;
==

where; {e1, €2, . . . , &m} are the eigenvectors corre-
sponding to the ordered eigenvalues of Rex.

Similarly, given R,y and d, the maximum likelihood
estimate AS®*A* is the maximum F-porm rank d ap-
proximation of Ry

d . 2D
ASP®A® = »zl Af)‘}r‘ (’l')-; (
=

where, {(A;7>Ay7> . .. >Am®} and {87, &%, ...,
Em™} are the eigenvalues and the corresponding eigen-
vectors of Ry,. N .

As remarked earlier, the information in Rex and Ryy
can be jointly exploited to improve the estimates of the
underlying subspace and therefore of the estimates of
ASA* and AS®*A*. In situations where the array ge-
ometry (i.e., the manifold on which the columns of A
lie) is known, these estimates can be further improved,
but this is not pursued here since no knowledge of the
array geometry is assumed.

Estimating Directions of Armval

The estimates of the DOA’s now follow by comput-
ing the m GEV's of the matrix pair ASA® and
AS®*A*. This is a singular generalized eigen-problem
and needs more care than the regular case to obtain
stable estimates of the GEV’s Note that since the sub-
spaces spanned by the two matrix estimates cannot be
expected 1o be identical, the m—d noise GEV's will not
be zero. Furthermore. the signal GEV’s will not lie
exactly on the unit circle. In practice. d GEV’s will lie
close to the unit circle and the remaining m—d GEV's
well inside and close 10 the onigin. The d values near the
unit circle are the desired estimates of $xx. The argu-
ment of Pk may now be used in conjunction with (16)
to obtain estimates of the source directions. This con-
cludes the detailed discussion of the algonthm.

Total Least-Squares Alternative Embodiment

The processing of signal measurements to identify the
number of sources and estimate parameters thereof as
above described relies on a least squares of deviation
algorithm in computing the eigenvalues. Total least-
squares (TLS) is the basis of another algonthm which
represents an extension of and an improvement (o the
least-squares algonthm, and will be descnbed later.

SOME REMARKS
Estimation of the Number of Signals

In the algorithm detailed above, an estimate of the
number of sources d is obtained as one of the first steps
in the algorithm. This esumate is then used in subse-
quent steps as the rank of the approximations to covan-
ance matnices. This approach has the disadvantage that
an error (paruicularly underestimation) in determining d
may result in severe biases in the final DOA estimates.
Therefore, if an estimator for o2 can be found which is
independent of d (e.g., &Z=A min), estimation of d and
the DOA’s can be performed simultaneously. Simula-
tion results have shown that the estimates of ® have low
sensitivity 1o errors in estimating o<. This implies that
the rank d esumates of ASA® and AS®*A*® can be
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dispensed with and the GEV’s computed directly from
the matrix pair {Rzx—&21,R o }. This results in the need
to classify the GEV’s as either source or noise related
which is a function of their proximity to the unit circle.
This ability to simuitaneously estimate d and the param-
eters of interest is another advantage of ESPRIT over
MUSIC.

Extensions to Multiple Dimensions

The discussion hitherto has considered only single
dimensional parameter estimation. Often, the signal
parameterization is of higher dimension as in DF prob-
lems where azimuth, elevation, and temporal frequency
must be estimated. In essence, to extend ESPRIT to
estimate multidimensional parameter vectors, measure-
ments must be made by arrays manifesting the shift
invariant structure in the appropnate dimension. For
example, co-directional sensor doublets are used to
estimate DOA’'s in a plane (e.g., azimuth) containing the
doublet axes. Elevation angle is unobservable with such
an array as a direct consequence of the rotational sym-
metry about the reference direction defined by the dou-
blet axes (cf. cones of ambiguity). If both azimuth and
elevation estimates are required, another pair of subar-
rays (i.e. another group, preferably orthogonal to the
first pair) sensitive to elevation angle is necessary. Geo-
metrically, this provides an independent set of cones,
and the intersections of the two sets of cones yield the
desired estimates. Note that the parameter estirnates
(e.g., azimuth and elevation) can be calculated indepen-
dently. This results in the computational load in ES-
PRIT growing linearty with the dimension of the signal
parameter vector, whereas in MUSIC it increases expo-
nentially.

If the signals impinging on the array are not mono-
chromatic, but are composed of sums of cisoids of fixed
frequencies, ESPRIT can also estimate the frequencies.
This requires temporal (doublet) samples which can be
obtained for example by adding a uniform tapped delay
line (p+1 taps) behind each sensor. The frequencies
estimates are obtained (independent of the DOA esti-
mates) from the mp xmp auto- and cross-covariance
matnces of two (temporally) displaced data sets (corre-
sponding to subarrays in the spatial domain). The first
set X contains mp samples obtained from taps 1 to p taps
in each of the m delay lines behind the sensors. The set
Y is a delayed version of X and uses taps 2 to p+1 in
each of the m delay lines. The GE's obtained from these
data sets define the multiple frequencies. Note that in
time domain spectral estimation, ESPRIT is only appli-
cable for estimating parameters of sums of (complex)
exponentials. As mentioned previously, wideband sig-
nals can be handled by processing selected frequency
components obtained via frequency selective narrow-
band (comb) filters.

Array Ambiguities

Array ambiguities are discussed below in the context
of DOA estimation, but can be extended to other prob-
lems as weil.

Ambiguities in ESPRIT anse from two sources.
First, ESPRIT inherits the ambiguity structure of a
single doublet, independent of the global geometry of
the array. Any distnbution of co-directional doublets
contains a symmetry axis, the doublet axis. Even though
the individual sensor elements may have directivity
patterns which are functions of the angle in the other
dimension (e.g., elevauon), for a given elevation angle
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the directional response of each element in any doublet
is the same, and the phase difference observed between
the elements of any doublet depends only on the az-
muthal DOA. The MUSIC algorithm, on the other
hand, can (generally) determine azimuth and elevation
without ambiguity given this geometry since knowl-
edge of the directional sensitivities of the individual
sensor elements is assumed.

Other doublet related ambiguities can also anse if the
sensor spacing within the doublets is larger than A/2. In
this case, ambiguities are generated at angles arcsin
{AM@iix2n7w)2mA}, n=0, 1, . . ., a manifestation of
undersampling and the aliasing phenomenon.

ESPRIT is also heir to the subarray ambiguities usu-
ally classified in terms of first-order, second-order, and
higher order ambiguities of the array manifold. For
exampie, second-order, or rank 2 ambiguties occur
when a linear combination of two elements from the
array manifold also lies on the manifold, resulting in an
inability to distinguish between the response due 10 two
sources and a third source whose array response is a
weighted sum of the responses of the first two. These
ambiguities manifest themselves 1n the same manner as
in MUSIC where they bring about a collapse of the
signal subspace dimensionality.

Finally, it should be noted that the doublet related
ambiguities present in ESPRIT do not cause any real
difficulties in practice. Indeed, it is precisely such ambi-
guities that allow ESPRIT to separately solve the prob-
lem in each dimension.

ARRAY RESPONSE ESTIMATION AND
SIGNAL COPY

There are parameters other than DOA’s and tem-
poral frequencies that are often of interest in array pro-
cessing problems. Extensions of ESPRIT to provide
such estimates are described below. ESPRIT can also
be easily extended to solve the signal copy problem. a
problem which is of particular interest 1n communica-
tions applications.

Estimation of Array Response (Direction) Vectors

Let ¢; be the generalized eigenvector (GEV) corre-
sponding to the generalized eigenvalue (GE) v, By
definition. e, satisfies the relation

AS(/ =y D14 e, =0 g}

Since the column space of the pencil AS(I—y®)A* s
same as the subspace spanned by the vectors {a,.j=1}. it
follows that e, is orthogonal to all direction vectors,
except a,. Assuming for now that the sources are uncor-
related, 1e.,

S=dug{c;-. ok [BE3)

multiplying Ce. by e, yields the desired result;

Crrt, = 45[0. ... .00,%,0. . ..
.0} Txapor a;%)=scalar x a,. 4

The result can be normalized to make the response at
sensor 1 equal to unity, yielding:

Crert, 2
) = ——
' “rculn

where u=[1,0.0, . ..,0}T.
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Estimation of Source Powers

Assuming that the estimated array response vectors
have been normalized as described above (i.e., unity
response at sensor 1), the source powers follow from
(24):

[u7Careil? as

2
= e Cyre;

Note that these estimate are only valid if sensor 1 is
omni-directional, i.e., has the same response to a given
source in all directions. If this is aot the case, the esti-
mates will be ia error.

Estimation of Array Geometry

The array geometry can now be found from {a;} by
solving a set of linear equations. The minimum number
of direction vectors needed is equal to the number of
degrees of freedom in the sensor geometry. If more
vectors are available, at least squares fit can be used.
Note that multiple experiments are required in order to
solve for the array geometry, since for each dimension
in space about which array geometric information is
required, m direction vectors are required. However, in
order to obuain estimates of the direction vectors, no
more than m— | sources can be present during any oae
experiment. Thus the need for multiple experiments is
marufest.

Signal Copy (SC)

Signal copy refers to the weighted combination of the
sensor measurements such that the output contains the
desired signal while completely rejecting the otherd -1
signals. From (22), ¢, is orthogonal to all wavefront
direction vectors except the i wavefront, and is there-
fore the desired weight vector for signal copy of the it
signal. Note that this is true even for correlated signals.
If a unit response to the desired source is required, once
again the assumption of a unit response at sensor 1 to
this source becomes necessary. The weight vector is
now a scaled version of ¢; and using the constraint a,*-
wAC=1 can be shown to be

o522

In the presence of correlated signals as often arises in
situations where multipath is present, it is useful to com-
bine the information in the various wavefronts (paths).
This leads to 2 maximum likelihood (ML) beamformer
which is given by:

Qn
|uTCrreil
€*Crqe;

"l'wL=Ru_‘Cu‘i- 8
In the absence of noise, Reyr=Crxy and wMt=w5C
Similarly, opumum weight vectors for other types of
beamformers can be determined.

SOME GENERALIZATIONS OF THE
MEASUREMENT MODEL

Though the previous-discussions have been restricted
to specific models for the sensors elements and noise
charactenistics, ESPRIT can be generalized in a
straightforward manner to handle a larger class of prob-
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lems. In this section, more general models for the ele-
ment, signal, and noise characteristics are discussed.

Correlated Noise

In the case when the additive noise is correlated (i.e.,
no longer equal to ¢il), modifications are necessary. If
the noise auto- and cross-covariances for the X and Y
subarrays are known to within a scalar, a solution to the
problem is available. Let Qxy and Q;y be the normalized
auto- and -cross-covariance matrices of the addiuve
noise at the subarrays X and Y. Then,

ASA® = Rn - A&E&Qxx)gu; (29)

WHEre ApminRxx.Qxs} is the minimum GEV (multiplicity
m—d) of the matrix pair (Rxzx, Qxx). We can also find

ASO A =Ry~ knm(kxy.Qx’)Qxy (&)
where AminR0xy) is similarly defined. At this point,
the algorithm proceeds as before with the GE's of the
matrix pair (ASA*,ASP*A*) yielding the desired re-
sults.

Coherent Sources

The problem formulation discussed so far assumed
that no two (or more) sources were fully correlated
with each other. This was essential in the development
of the algorithm to this point. ESPRIT relies on the
property that the values of ¥y for which the pencil
(ASA®*—yASDP*A®) reduces in rank from d to d—1
determine $. This is, however, true only when

PASA® ~ yASD*4*) =p(S(] - y®)) = p([ —y®) (3D
That is, p(I—y®) rather that p(S) determines p{A-
SA®*—-yASP*A*). This in turn is satisfied only when S
is full rank, and thus excludes fully coherent sources.

ESPRIT can be generalized to handle this situation
using the concept of spatial smoothing. Consider a sig-
nal environment where sources of degree two coher-
ency (i.e., fully coherent groups contain at most two
sources each) are present. Assume that the array is now
made up of tnplet (rather than doublets used earlier)
element clusters. Let the corresponding subarrays be
referred to as X, Y and Z. Assume, as before, that ele-
ments within a cluster are matched and all clusters have
a identical (local) geometry. Let xy and $xz be the
rotation operators with respect to subarray X for subar-
rays Y and Z respectively.

Defining the covanances R;;,R;y.R =Ry and Ry in
the usual manner, we note that

ComRp~AmnSlaAO xzS® yz°4° (M)

and

Reye = AS Q4" (33)

Ryr = ADyyS®x2* A
Now consider the matrix pencil

(Crz+Cr) =¥ (Rey+ Rp) = AS+ Qx2S x2*-

XI~y®xyd® (33)
It is easy to show that for a degree two coherency
model,
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HS+OITSOrr)=d a9
Therefore, the rank of the smoothed wavefront covari-
ance matrix has been restored. Hence, (I—y9) once
again coatrols rank of the smoothed pencil in (34), and
the GE's of the pair {Czr+CzRzy+ Ry} determine the
DOA's. Further, for arbitrary degree of coherency it
can be shown that the number of elements needed in a
cluster is equal to the degree of coherence plus one.

Mismatched Doublets

The requirement for the doublets to be pairwise
matched in gain and phase response (at least in the di-
rections from which the wavefronts are expected) can
be relaxed as shown below.

1. Uniform Mismatch—The requirement of pairwise
matching of doublets can be relaxed to having the rela-
tive response of the sensors to be uniform (for any given
direction) at all doublets. This relative response, how-
ever, can change with direction. Let A denote the di-
rection matrix for subarray X. Then the direction ma-
trix for subarray Y can then be written as AG, where;

G=disglp. . - - . &4 (36)
and {g;} are the relative responses for the doublet sen-
sors in the directions 8;. It is evident that the generalized
cigenvalues of the matrix pair {Czy, Ry} will now be
®;Gi resulting in GE's which no longer lie on the unit
circle. If the relative gain response (Gy) is real, the GE's
deviate only radially from the unit circle. Since it is the
argument (phase angle) of the GE’s which is related to
the DOA's, this radial deviation is important only in so
far as the method of determining the number of signals
must be altered (the number of unit circle GE's is no
longer d). On the other hand, a relative phase response
will rotate the GE’s as well resulting in estimation bias
that can be eliminated only if the relative phase mis-
match is known. As an example of such an array of
musmatched doublets, consider X and Y subarrays
which are identical across each subarray but are mis-
matched between arrays.

2. Random Gain and Phase Errors—In practice, sen-
sor gains and phases may not be known exactly and
pairwise doublet matching may be in error violating the
model assumptions in ESPRIT. However, techniques
are available that exploit the underlying signal modei to
identify the sensor gains and phase from the sensor data.
This is in effect a pseudo-calibration of the array where
data from a few experiments are used to identify gain
and phase error parameters. The estimates so obtained
are the used to calibrate the doublets.

A GENERALIZED SVD APPROACH

The detaiis of the computations in ESPRIT presented
in the previous sections have been based upon the esti-
mation of the auto- and cross-covariances of the subar-
ray sensor data. However, since the basic step in the
algorithm requires determining the GE’s of a singular
matrix pair, it is preferable to avoid using covariance
matrices, choosing instead to operate directly on the
data. Benefits accrue not only from the resulting reduc-
tion in matrix condition numbers, byt also in the poten-
tial for a recursive formulation of the solution (as op-
posed to the block-recursive nature of eigendecomposi-
tion of sample covaniance tmatrices). This approach
leads to a generalized singular value decomposition
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(GSVD) of data matrices and is briefly described be-
low.
Let X and Y be mXx N data matrices containing N
simultaneous snapshots x(t) and y(t) respectively;

X = [x(01), e . . ., N, (37
Yo (1), Ar2)s - - KN

The GSVD of the matrix pair (X.Y) is given by:
X = UxZxV™ a8)
Y = UyLlyb™

where Uy and Uy are the m X m unitary matrices con-
taining the left generalized singular vectors (LGSV's),
Zxand Zyare m XN real rectangular matrices that have
zero entries everywhere except on the main diagonal
(whose pairwise ratios are the generalized singular val-
ues), and V is a nonsingular matrix.

Assuming for a moment that there is no additive
noise, both X and Y will be rank d. Now consider the
pencil

Xy YmA(I—y®)s(ty). . . . ()} (39)
Similar to previous discussions, whenever y=®;;, this
pencil will decrease in rank from d to d - 1. Now con-
sider the same pencil written in terms of its GSVD:

(40}

X~ yY = (UxXZy - yUyIpbe

= UxIgl - yIgz'Up UyIpy

This pencil will loose rank whenever ¥ is an eigenvalue
of (Ty—Uy*Uyly). Therefore the desired ®;; are the
eigenvalues of the product Zxy—'Uy*UyZy However,
from the underlying model in (1) and (2), it can be
shown that in the absence of noise Zy=2Xy, in which
case @, are also the eigenvalues of Ux*Uy.

In presence of additive white sensor noise, we can
show that asymptoticaily (i.e.. for large N) the GSVD
of the data matrices converges to the GSVD obtained
in the noiseless case except that 2y and 2y are aug-
mented by a?l. Therefore. the LGSV matrices in the
presence of noise are asymptotically equal to Uy and
Uy computed in the absence of noise, and the carlier
result is still applicable.

To summarize. when given data instead of covanance
matrices, ESPRIT can operate directiy on the data by
first forming the data matrices X and Y from the array
measurements. Then, the two LGSV matrices Uy and
Uyare computed. The desired @, are then computed as
the eigenvalues of the product Uxy*Uy. Estimates for
other model parameters as discussed previously can be
computed in a similar manner.

The step of signal measurement can include a GSVD
of data matrices as follows:

forming the matrix Z from the available measure-
ments, computing the generalized singular value de-
composition (GSVD) of {Z*,Z.*},

U*Z Em Vo3 i °Ediag{o(Z°2.i%)}

obtaining the signal subspace estimate Sz=span E7
where
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Ex
Ey

computing the singular value decomposition (SVD) of

Et'z-['ll'~-|‘ﬂ"‘[

(ExtEY 141} = UTV™

Vex Vxy
U= (UgiUy, £ = disg{ey,..., ol V=
Yvyx Vry

calculating the cigenvalues of &>k=)\,(—vnyn-l),
and estimating the signal parameters 8;="[—l(Dy).

The basic idea behind ESPRIT is to exploit the rota-
tional invariance of the underlying signal subspaces
induced by the translational invariance of the sensor
array as manifest in the following summary of the TLS
ESPIRT covariance algorithm.

TLS ESPRIT Covariance Algorithm Summary

1. Obtain an (unconstrained) estimate of Rzz, denoted
Rzz, from the measurements Z.
2. Compute the generalized eigen-decomposition of
{Rzz,Zu}
RzzE=I.EA. 41
3. If necessary, estimate the number of sources d.

4. Obtain the signal subspace estimate Sz=span{Ez}
and decompose it into two subspaces where

H

5. Compute the eigendecomposition (A1>. .. >Azj), of

(42)
def

E; =3a0e)].. ) eq] =

(43
def] Ex*
Exy* Exy "[Er‘ ](Exlfﬂ = EAL®,

and partition E into dxd submatrices.

(44)
defl £y Ej3
E = )
En En
6. Calculate the eigenvalues of J= —E 3E3;~!
SemA - E1zEp™"), Vikml, ... d “%

7. Estimate the signal parameters using 5k=f-‘(&>k).
For DOA estimation,

brm=un = {carg($ )/ (wod)}. (46)

The algorithm is based on the following resuits for
the case in which the covariance of the measurements
Rzz=ASA* +a23,is assumed known. From the prop-
erties of the generalized eigendecomposition (1), and
assuming d =m/2, the m —d smallest generalized eigen-
values (GEs) are equal to ol and the d generalized
eigenvectors (GEVs) corresponding to the 4 largest
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GEs satisfy span{Ez}=span{A}. Furthermore, the
invariance structure of the array implies span{Ex}=-
span{Ey}=span{A}. Thus, there exists a nonsingular T
such that Exy=AT and Ey=A®T. Since Eyand Ey
share a common column space, p([Ex|Ey])=d which
implies there exists a2 matrix E(e €2dxd sych that

[EXIEAED = Ex£f + EvEP.

= ATEP + a07E{® = 0.

Defining y= ~ExME¢9]~!, equation (10) can be
rearranged to yield

4N

(48)

ATU=ADT—ATUT— ' = 4. (49)

Assuming A to be full rank,

(50)
TVT-! = o,

Therefore, the eigenvalues of Y must be equal to the
diagonai elements of ¢ and the eigenvectors of U equal
T. This is the key relationship in the development of
TLS ESPRIT.

When the covariance matrix is estimated from mea-
surements Z, span{Ez} is an estimate of Sz. This implies
with probability one that span{E r}stspan{Ey}, and the
right-hand side of equation 10 is replaced by a matnix of
errors whose Frobenius norm (i.e., total least-squared
error) is to be minimized. Appending a nontriviality
constraint E*E@=] 1o eliminate the zero solution
and applying standard Lagrange techniques (cf., [1]).
E@ is given by the eigenvectors corresponding to the d
smallest eigenvalues of Exy*Eyy. The eigenvalues of v
calculated from the estimated E(d) are estimates of the
diagonal elements of ¢.

Note that repeated roots in the set of d smallest GEs
pose no problem here. A set of d orthonormal vectors 1s
guaranteed since Exy*Exy is a Hermitian positive
(semu-)definite matrix. Furthermore, eigenvectors are
not required. Schur vectors can be used instead, which
is advantageous since algonthms for obtaining Schur
vectors exhibit greater numerical stability than those for
obtaining eigenvectors.

Total Least-Squares (TLS) GSVD ESPRIT

In many instances, it is preferable to avoid using co-
variance matrices, and instead to operate directly on the
data. Benefits accrue from the resulting reduction n
matrix condition numbers. This approach leads 1o a
generalized singular value decomposition (GSVD) of
data matrices. The GSVD version of ESPRIT 1s ob-
tained by simply replacing all the eigendecompositions
with the GSVDs except for the final eigendecomposi-
tion of .

A brief summary of the TLS ESPRIT GSVD algo-
rithm is presented below:

Comparison with the covariance matrices indicates
that the GSVD version of ESPRIT is obtained by sim-
ply replacing eigendecompositions with the associated
GSVDs. Though the GSVD algorithm is described for
the TLS approach, the same philosophy can be used to
obtain a GSVD version of the standard ESPRIT co-
variance algonthm.
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First, note that the generalized singular value decom-
positions used in the algorithm can be avoided alto-
gether. The GSVD performed to obtain Ez can be
replaced by a standard SVD by first performing a
Mahalanobis transformation on the measurements, i.e.,
Z—~X-1Z, to whiten the noise. Furthermore, the sec-
oad SVD can be eliminated altogether and replaced by
a generalized eigendecomposition of

(Ex| - EAEx| - EXL2¥}

which can, in turn, be reduced to a standard eigenprob-
lem. However, since the matrix being decomposed is
m X 2d, unless m> >2d there is little to be gained by
preferring an eigendecomposition unless hardware or
other extraneous factors dictate the use of one over the
other. In any case, the approach is of same practical
interest since covariance formulation is avoided, thus
potentially improving numerical stability.

ARRAY CALIBRATION USING TLS ESPRIT

Using the TLS formulation of ESPRIT, the array
manifold vectors associated with each signal parameter
can be estimated directly to within an arbitrary scale
factor. No assumption concerning source covarance is
required. From equation (12), the eigenvectors of ¥ are
given by E,=T—!. This result can be used t0 obtain
estimates of the array manifold vectors;

EzEw = ATT-! = ;]

TLS ESPRIT SIGNAL COPY

In many practical applications, not only are the signal
parameters of interest, but the signals as well. Estima-
tion of the signals as a function of time from an esti-
mated DOA is termed signal copy. The basic objective
is to estimate from the array output the signal from a
particular DOA while rejecting all others. A weight
matrix W (i.e., a linear estimator) whose i** column is a
weight vector that can be used to obtain an estimate of
the signal from the i estimated DOA and reject those
from the other DOAs is given by

($1))]

Wal, EAEI "'EZ]"'Ey—", (52

which can be seen as follows. From equation (12), 1t
follows that the right eigenvectors of & equal T-1.
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Combining this fact with Ez=AT and substituting in 50

(14) vields
W =Ey—[Ez*Z.-EZ]-Ez* S, ~ I =[A®Z,1A] -1
A*3I,-l Since the optimal copy vector is clearly a
vector that is orthogonal to all but one of the vectors in
the columns of A, noting that W*A =1 establishes the
desired result.

TLS ESPRIT SOURCE CORRELATION
ESTIMATION

There are several approaches that can be used to
estimate the source correlations. The most straightfor-
ward is to simply note that the optimal signal copy
matrix W removes the spatial correlation in the ob-
served measurements (cf., (14)). Thus,
W*CzzW =DSD* where S is the source correlation
(not covanance) matrix, Czz=Rzz—02Z, and the
diagonal factor D accounts for arbitrary normalization
of the columns of W. Note that when Rzz must be
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estimated, a  manifesdy rank d  estimate
Czz=EAAZN-GU4Ez* can be used, where
AZ@D=diag{A,, . . . ,Aq} and A;is a generalized cigen-
value of (Rzz,2,). Combining this with Ez=AT gives
DSD*=TIAZN~ &4 T (53)

If a gain pattern for one of the elements is known,
specifically if the gain gi(8«) is known for all 84 associ-
ated with sources whose power is to be estimated, then
source power estumation is possible since the array man-
ifold vectors can now be obtained with proper scaling.

What 1s claimed is:

1. A method of detecting multiple signal sources and
estimating parameters thereof comprising the following
steps:

(a) providing an array of at least one group of a plu-
rality of signal sensor pairs, the sensors in each pair
being identical and the displacement between sen-
sors of each pair in a group being equal, thereby
defining two subarrays (X and Y),

(b) obtaining signal measurements with the sensor
array so configured,

(c) processing said signal measurements from said
1two subarrays (X and Y) to identify the number of
sources and estimate parameters thereof, including
identifying eigenvalues from which source number
and parameter estimates are based,

(d) solving the signal copy problem and determining
array response (direction) vectors using the gener-
alized eigenvectors, and

(e) estimating the array geometry from the said array
response vectors.

2. The method as defined in claim 1 and further in-
cluding a variation to improve numerical charactenstics
using generalized singular value decompositions of data
matrnices by:

(a) forming data matrices X and Y from the data from

the subarrays,

(b) computing the generalized singular vectors of the
matrix pair (X, Y) sielding X=U,Z,V* and
Y=U,2,V*

(c) then computing the eigenvalues of Z,-1U*U,Z,
and locating those which lie on or near the unit
circle, the number of which corresponding to the
number of sources and the locations of which cor-
responding to the parameter estimates.

3. The method as defined by claim 1 wherein said step
of idenufying eigenvalues utilizes a total least-squares
algonthm.

4. The method as defined by claim 3 wherein said step
of idenufying eigenvalues includes .

obtaining an estimate of Rzz, denoted Rzz, from the
measurements available,

compuung the generalized eigen-decomposition

RzzE=X,EA

obtaining the signal subspace estimate Sz=span Ez

where
Ex
el — Ey

computing the eigen-decompositian

def
E, =Z,0e1 ..
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Er ’
Exy* Exy = Ey [ExXIEY] = EAE®"

partitioning E into d Xd submatrices

defl £y £z
E = , and
En En

calculating the eigenvalues

Spmrd~EnEn=t), Vkml, ..., 4

5. A methodd of locating signal sources and estimat-
ing source parameters-comprising the following steps:
(a) providing an array of at least one group of a plu-
rality of signal sensor pairs, the sensors in each pair
being identical and the displacement between sen-
sors of each pair in a group being equal, thereby
defining two subarrays (X and Y),
(b) obtaining signal measurements with the sensor
array so configured, and
(c) processing said signal measurements from said
two subarrays (X and Y) to identify the number of
sources and estimate parameters thereof, including
a generalized singular value decomposition of data
matrices comprising
forming the matrix Z from the available measure-
ments,
computing the generalized singular value decom-
position (GSVD) of

{Z° Z,0%}, U*Z°E = ¥* 3i°E diag{o(Z" 1,1%)

obtaining the signal subspace estimate Sz=span
Ez where

E,
Er = Zolnr]. - ] e ——[EY]
computing the singular value decomposition
(SVD) of
((Ex 1EA 241} = UZV™
Vix Vrxy
U={UriUA 2 » diag{or, .. .opu) V=
Vrx Vyr
calculating the eigenvalues of
Qu=rd = Var¥ry=h.
and . .
estimating the signal parameters i =f—1(Py).

6. For use in locating signal sources and estimating
source parameters, apparatus for measunng signals
from said sources comprising

an array of at ieast one group of a plurality of signal

sensor pairs for generating signals, the sensors in
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each pair being identicai and the displacement be-
tween sensors of each pair in a group being equal,
thereby defining two subarrays (X and Y), and

signal processing means for processing said signals
from said two subarrays (X and Y) to id:atify the
number of sources and estimate parameters thereof,
wherein said signal processing means

obtains an estimate of Rzz, denoted Rzz, from the
measurements available,

--computes the generalized eigen-decomposition

RzzE=3.EA

obtains the signal subspace estimate Sz=span Ez

where
Ex
Ey

computes the eigendecomposition

def
Er =ZIaler| .| edl —

def! Er
Exy"Exy ‘[E)‘ ](Ex |EY] = EAE".

partitions E into d Xd submatrices

defl £y Ep2
E =
Ey Ep
calculates the eigenvalues
Spmhl~EngEny— ") Vk=l, ... d
estimates the signal parameters br=F-dy).
7. Apparatus as defined by claim 6 wherein said signal
processing means

forms the matnix Z from the available measurements,
computes the GSVD of

{Z* I.i%}, U*Z°E = V* I1°E diag{o(Z" 2.1}

obtains the signal subspace estimate $y=R{Ez},

Ex
Erm I (e ). .. ’J—[Ey]

computes the SVD of {({Ex|Ey]Zy!}=UZV?,

Vxx Vxr
U= [UriUA I = dugley.  .ou)h V=1| |
Vrx Vry

calculates the eigenvalues of
Si=Al—VrrVrr~h.
and

estimates the signal parameters §x=f-}(®y).
L] L
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[57) ABSTRACT

The invention relates generally to the field of signal
processing for signal reception and parameter estima-
tion. The invention has many applications such as fre-
quency cstimation and filtering, and array data process-
ing, etc. For convenience, only applications of this in-
vention to sensor array processing are described herein.
The array processing problem addressed is that of signai
parameter and waveform estimation utilizing data col-
lected by an array of sensors. Unique to this invention is
that the sensor array geometry and individual sensor
characteristics need not be known. Also, the invention
provides substantial advantages in computations and
storage over prior methods. However, the sensors must
occur in pairs such that the paired elements are identical
except for a displacement which is the same for all pairs.
These clement pairs define two subarrays which are
identical except for a fixed known displacement. The
signals must also have a partcular structure which in
direction-of-arrival estimation applicatdons manifests
itself in the requirement that the wavefronts impinging
on the sensor array be planar. Once the number of sig-
nals and their parameters are estimated, the array con-
figuration can be determined and the signals individu-
ally extracted. The invention is applicable in the context
of array data processing to a number of areas including
cellular mobile communications, space antennas, sono-
buoys, towed arrays of acoustic sensors, and structural
analysis.
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